
1

Comparing App Development Approaches
Native vs. Cross-Platform App Development

 Katharina Wurm
 it241504@fhstp.ac.at

05.03.2025

ABSTRACT
The increase in mobile device usage has driven the need for

applications that work across various platforms. This paper
explores the two primary approaches to mobile app development:
native and cross-platform. Existing research shows that native
development ensures high performance and user experience but
requires more time and resources. In contrast, cross-platform
development methods – such as web, hybrid, interpreted, and
cross-compiled apps – streamline development through code
reuse, though often at the cost of performance and functionality.
However, as mobile technologies continue to evolve, research
gaps remain, thus emphasising the need for updated studies to
reflect the rapid technological advancements in this field.

KEYWORDS
Mobile, App development, Native app development, Cross-
platform app development

1 Introduction
Nowadays, mobile phones have become a device that most

people use every day, and the various types of smartphones on the
market are almost as diverse as the people using them. Thus,
developers intending to create an app need to make sure that it can
run on different operating systems. By making an app available on
as many mobile platforms as possible, the app’s market presence
can be increased, which according to Delía et al. (2017) is vital, as
the success of an app is tied to its popularity.

However, due to the numerous possibilities regarding
programming languages, development tools, time-to-market
demands, and more, the choice on how to make the app work on
multiple platforms is not always easy (Delía et al., 2017),
especially also because of the ever-changing and constantly
evolving technologies (Karami et al., 2023).

There are two different approaches to app development, which
will both be discussed in this paper: native and cross-platform
development. Both of them have their advantages and
disadvantages, which all need to be considered when choosing
between the available app development frameworks (Karami et
al., 2023). The goal of this paper is to examine and compare other
researchers’ findings on app development approaches and to
identify gaps that need to be addressed through future research.

2 Types of App Development

2.1 Native App Development
When developing mobile applications natively, a development

project is created and worked on for each platform, which uses the
platform-specific languages (Delía et al., 2017), such as Java or
Kotlin for Android and Swift for iOS (Koram & Garg, 2023; Suri
et al., 2023). Thus, when wanting to distribute an app to different
platforms, the same app has to be developed multiple times
(Koram & Garg, 2023). Since a separate app needs to be
developed for each platform, the development and maintenance of
apps costs more and demands more effort (Delía et al., 2015); due
to little code reuse, it is very expensive and time-consuming (Suri
et al., 2023).

However, these extra costs also have their advantages: native
app development allows developers to directly access native
platform functionalities, such as the camera, GPS, and other
sensors (Delía et al., 2017; Ebone et al., 2018; Koram & Garg,
2023). Furthermore, according to Delía et al. (2017), a user does
not need to be connected to the internet to be able to run a native
application. Additionally, the researchers claim that native apps
execute quickly and it is possible for them to run in the
background. Generally, Ebone et al. (2018) believe that native
apps provide the best performance and user experience on their
respective platforms. Patidar and Suman (2021) are of a similar
opinion, since they state that native apps tend to allow for high
performance and good user experiences. Koram and Garg (2023)
also highlight the “significantly better performance” of native
apps and their secure and robust user interfaces (p. 262). Because
of their performance and fast execution time, native apps typically
have a higher ranking in app stores, meaning they have a
“significantly higher level of user satisfaction” (Suri et al., 2023,
p. 2).

When it comes to native applications in the academic field,
Karami et al. (2023) evaluated 75 peer-reviewed conference and
journal papers on different app development approaches and
noticed that Android and iOS were the first and fifth most studied
frameworks. The researchers believe this might be because half of
the evaluated studies used a native app development framework as
a baseline to compare cross-platform frameworks to.

2

2.2 Cross-Platform App Development
Cross-platform, or multi-platform, development uses a single

code base which can be run on different mobile platforms (Delía
et al., 2017; Ebone et al., 2018; Suri et al., 2023). Thus, the
advantage of this development approach is the reduction of
development effort, cost and time (Delía et al., 2017; Ebone et al.,
2018; Suri et al., 2023) due to the code reutilisation (Delía et al.,
2015). However, cross-platform apps are unable to provide the
same performance and user experience as native applications (Suri
et al., 2023).

According to Karami et al. (2023), the academic interest in
cross-platform frameworks is advancing: Cordova appeared
within 32 studies and is therefore the most studied multi-platform
framework. However, Cordova, as well as Titanium, are also
among the oldest cross-platform frameworks, as they were
released in 2009. The newer frameworks include Xamarin, which
was released in 2011, React Native, which came out in 2016, and
Flutter, which was released a year later. In 2021, Flutter was very
popular among developers (Koram & Garg, 2023). Karami et al.
(2023) also found Flutter and React Native to have been the most
popular multi-platform frameworks among developers in 2022,
thus beating Ionic and Xamarin.

Although the mentioned frameworks are all cross-platform,
they can differ in how they work. There are multiple approaches
to cross-platform app development, which will be elaborated on in
the following subchapters.

2.2.1 Web Applications
Web applications are apps that are developed with HTML,

CSS and JavaScript, and run in the browser (Delía et al., 2017;
Koram & Garg, 2023). No installation is necessary, which means
the distribution and updating of apps is easier (Delía et al., 2017;
Koram & Garg, 2023), but it might make the application less
attractive compared to native apps (Delía et al., 2015). Since only
a browser with a connection to the internet is needed, the
development is fast and easy, and the developer does not need to
adapt to any specific platform (Delía et al., 2017).

On the downside, due to the client-server interaction via the
internet, the response time and performance of the web app could
be affected negatively (Delía et al., 2015), which could worsen the
user experience (Delía et al., 2017). In addition to web apps being
dependent on an internet connection most of the time, the type of
browser may also affect the user experience (Koram & Garg,
2023). Furthermore, because of the security restrictions imposed
on websites, web apps and their interfaces are limited when it
comes to the use of native functionalities (Delía et al., 2015; Delía
et al., 2017).

Nowadays, Progressive Web Apps (PWAs) aim to make web
apps feel more like real apps, by even making them able to be run
offline (LePage & Richard, 2024), which is why it would be
interesting to further investigate how modern PWAs compare in
terms of performance and usability.

2.2.2 Hybrid Applications
Hybrid applications rely on the use of web technologies, such

as HTML, CSS and JavaScript, but unlike web apps, they are not

run by a browser; instead, they are executed on a web container,
which includes an API that grants access to device-specific
functionality (Delía et al., 2017). This way, according to Delía et
al. (2017), code can be reused for different platforms, all while
still being able to distribute the app via the platform-specific app
stores and being able to access native functionalities of the device.
Thus, unlike web apps, hybrid apps can function offline and are
“true applications” (Koram & Garg, 2023, p. 263).

On the other hand, the web container may negatively impact
the performance of the app, as it requires an extra load (Delía et
al., 2017; Koram & Garg, 2023; Zou & Darus, 2024). Moreover,
since it is developed using web technologies, the lack of native
components in the user interface might have a negative effect on
the user experience (Delía et al., 2017).

Examples of hybrid development frameworks include Apache
Cordova (Delía et al., 2017) and Ionic (Zou & Darus, 2024). The
latter also allows apps to be run directly in a web browser as a
PWA in addition to distributing the app via native app stores
(Pinto & Coutinho, 2018).

2.2.3 Interpreted Applications
Interpreted applications are often also built with JavaScript,

but the majority of the project is translated to native code, with the
remainder being interpreted at runtime, so that native interfaces
are obtained (Delía et al., 2017). Due to the native components, a
high performance can be achieved (Zou & Darus, 2024).

Some examples of frameworks that produce interpreted
applications include Appcelerator Titanium and NativeScript,
according to Delía et al. (2017). The researchers also state that
Titanium’s API serves as a bridge, since it maps each JavaScript
element to its matching native element, thus offering natively
controlled user interfaces. Something similar is reported by Zou
and Darus (2024): React Native allows developers to build
performance-critical portions of the application in native
languages due to its bridge which connects JavaScript with native
modules. The fact that lots of components are directly translated
to their native equivalents allows for responsive UIs and high
performance; nevertheless, the JavaScript bridge may pose as a
bottleneck at times (Zou & Darus, 2024).

2.2.4 Applications Generated by Cross-Compilation
Some applications can be directly compiled into native code,

such as by using the Xamarin or Corona framework, so that an
app version for each target platform is generated (Delía et al.,
2017).

However, while in Corona, only one base code is written in
Lua, a simple scripting language, Xamarin, on the other hand,
only allows developers to write shared business logic code in C#,
and each platform’s user interface still must be developed
separately (Delía et al., 2017). But then again, Zou and Darus
(2024) note that even though platform-specific user interfaces can
be created using Xamarin.iOS and Xamarin.Android, developers
can also choose to build a shared UI with Xamarin.Forms. Delía
et al. (2017) might not have mentioned Xamarin.Forms because it
was less widely adopted or fully developed at the time of their
publication. Nevertheless, even though Xamarin.Forms allows

3

developers to build a shared user interface, it often comes with
trade-offs in terms of delivering a fully native user experience, as
Zou and Darus (2024) emphasise.

Still, the approach of generating apps by cross-compilation
often yields a performance close to that of native apps, and results
in apps that look and behave similarly to as if they were written
natively (Ebone et al., 2018; Zou & Darus, 2024). Furthermore,
by compiling directly to native code, a framework like Flutter can
get rid of issues associated with JavaScript bridges in other
frameworks (Zou & Darus, 2024). However, Flutter requires
developers to use a specialised language called Dart, which they
must learn in order to build Flutter applications (Suri et al., 2023).

2.3 Summary
To sum up, apps can be developed natively or by using the

cross-platform approach. There are several types of cross-platform
development which can be further categorised into web apps,
hybrid apps, interpreted apps, and apps generated by cross-
compilation. Each of these approaches differs, so depending on
the specific requirements of an app, some might be better suited
than others. Therefore, it is important to understand how these
types of app development compare across different metrics, which
will be elaborated on in the following chapter.

3 Comparison
When it comes to comparing different frameworks or types of

app development, both the user’s perspective – such as the end
user’s satisfaction with the app’s performance and user interface –
and the developer’s perspective – such as the amount of support
provided by the framework during development – can be
considered (Karami et al., 2023). Out of all the studies assessed by
Karami et al. (2023), almost half of them took both perspectives
into account, while the other half was split relatively evenly
between the two. Furthermore, the researchers highlighted that the
criteria used to analyse the user’s perspective on an app’s
performance and UI often included CPU usage, memory, battery
level, launch time, and frames per second, while the criteria used
to evaluate the developer’s perspective varied; examples included
access to device sensors and the availability of framework
documentation and support. On average, each study focussed on
four criteria to compare different app development approaches.

The most used criterion for comparison is performance, as it
was found by Karami et al. (2023) in more than half of the
evaluated studies. According to Delía et al. (2017), this is because
performance highly influences user experience, and a bad user
experience will result in unhappy users, and thus bad user ratings.
Furthermore, Karami et al. (2023) found the next most used
criteria to be, in order: platform API accessibility, hardware and
sensors accessibility and user interface, so the app’s interface’s
quality from the user’s point of view. Thus, the main criteria
include both some related to the user’s perspective, and some
related to the developer’s perspective.

Additionally, Karami et al. (2023) categorised studies based on
their evaluation methods: experiment-based studies assessed

frameworks through prototype testing, while documentation-based
studies analysed the frameworks’ documentation. The researchers
found that two-thirds of the studies were experiment-based,
providing insights into runtime performance but with results
limited to specific prototypes – in contrast, document-based
studies offered a broader API evaluation but lacked real-world
performance insights. Few studies combined both methods or
included user surveys, likely due to the time and effort required
(Karami et al., 2023).

The following subchapters summarise findings by various
researchers on how different app development approaches
compare in specific metrics.

3.1 Performance
Karami et al. (2023) found that when it comes to performance,

native frameworks always yield a better result than multi-platform
frameworks. Furthermore, the researchers discovered that React
Native was often perceived to affect performance negatively in
comparison to other cross-platform frameworks.

On the other hand, Ebone et al. (2018) did not notice a relevant
difference between native Android and iOS apps, a Xamarin
Android app, and Appcelerator Titanium Android and iOS apps,
while the Xamarin.Forms Android and iOS apps took
significantly longer to load larger views. On top of that, the
researchers detected that the UI response time patterns of the
Apache Cordova apps on Android and iOS varied greatly on the
platforms.

Similarly, Delía et al. (2017) also highlighted a difference
between the Android and iOS platforms; they concluded that
performance experiments involving the iOS and Android
operating systems ought to be examined independently, as the
native method in iOS is far more effective. The researchers
believe that the native approach in Android might be slowed down
because Java needs the Android Runtime (ART) to function. On
the iOS platform, the native app also showed a significantly
higher performance compared to the cross-compiled apps (Delía
et al., 2017). Nevertheless, regardless of the operating system, a
web development approach would be an easy way to get a high
performance on all mobile devices, but only if the access to native
functionalities of the device is not required (Delía et al., 2017).
When analysing hybrid (Cordova) and interpreted apps (Titanium
and NativeScript), Delía et al. (2017) realised that the type of
JavaScript engine used in both approaches had a big influence on
the apps’ performance: hybrid and interpreted apps running on
Android, which uses the JavaScript V8 engine, had a much better
performance than those running on iOS, which uses the
JavaScriptCore engine. Hybrid and interpreted apps running on
Android showed a similar performance to web apps and were thus
even better than the native and cross-compiled apps, while the
same apps running on iOS were worse than native, web and cross-
compilation approaches (Delía et al., 2017). Thus, according to
Delía et al. (2017), the apps which were cross compiled using
Xamarin and Corona had the worst performance on the Android
platform, but only the second worst on iOS. However, it is
important to acknowledge that this study from 2017 may not fully

4

reflect the performance of modern app development frameworks,
thus highlighting the need for ongoing research in this field.

In a more recent paper, Koram and Garg (2023) stated that
Flutter “is known for its high level of performance” (p. 264).
Furthermore, the researchers found Ionic to have a moderate
performance and React Native and Xamarin to have a
performance “quite similar to native” (p. 265). Therefore, it would
be interesting to analyse how different app development
approaches compare in terms of performance today.

3.2 Memory, Battery, and CPU Usage
When it comes specifically to memory, native apps showed to

use the least compared to Flutter and React Native apps, with the
latter using the most (Karami et al., 2023). Furthermore, Karami
et al. (2023) found React Native to also consume more CPU and
battery than Flutter. Similarly, Suri et al. (2023) found React
Native to have the highest memory and CPU usage compared to
Kotlin and Flutter, but when it came to energy usage, both React
Native and Flutter showed a very high usage. Given these
findings, it would be valuable to examine how other frameworks
than the ones mentioned compare in terms of memory, CPU, and
battery consumption.

3.3 App Size
Compared to native Android and iOS apps, cross-platform

apps are substantially larger (Ebone et al., 2018). Karami et al.
(2023) point out that React Native apps are especially large. A
similar finding was reported by Suri et al. (2023), who found that
when comparing an app made with Kotlin, Flutter and React
Native, the native Kotlin app used the least amount of space,
while the React Native app used the most. This might also explain
the before-mentioned high memory, battery and CPU usage by
React Native.

3.4 Platform API and Hardware and Sensors
Accessibility

Moving on, when it comes to the access to camera,
geolocation, notifications, etc., most studies observed native
frameworks to be better, especially since most multi-platform
frameworks rely on third-party libraries to access some APIs
(Karami et al., 2023). This finding is in line with the frameworks’
descriptions in Chapter 2.

3.5 Development Support
While relying on third-party libraries can sometimes pose

limitations, it is also a significant advantage. According to Karami
et al. (2023), popular frameworks like React, Ionic, and Flutter
offer more third-party libraries and plugins and have greater
development support. However, it is not clear whether this
statement only applies in comparison to other cross-platform
frameworks, or also in comparison to native app development
methods.

3.6 Code Smells and Bugs
Another metric of interest is the number of code smells and

bugs. Karami et al. (2023) define a code smell as a
“maintainability issue that makes your code confusing and
difficult to maintain” (p. 136). When comparing native Android
apps with React Native apps, the researchers noticed that native
Android apps have more code smells. However, in large apps,
native Android apps still tend to have less bugs than React Native
apps. Based on these findings, it would be interesting to assess
even more frameworks regarding their number of code smells and
bugs.

3.7 User Interface
Lastly, when it comes to the user interface criterion, there is no

clear winner on the cross-platform side; however, generally, most
studies believe native frameworks to be more efficient in
producing a high-quality interface than cross-platform ones
(Karami et al., 2023). Which frameworks were evaluated in
specific, though, is not clear.

Furthermore, Koram and Garg (2023) also believe native apps
to be the preferred choice for delivering an intuitive user interface
due to their high performance and reliability.

4 Conclusion
In the matter of app development, there are various approaches

one can take. Choosing between them can be difficult, especially
since each one of them has its advantages and disadvantages.

Patidar and Suman (2021) believe that developers should
choose the native approach if they need the best user experience,
the fastest speed, the possibility to fully make use of device
features, and if they need the app to function even without an
internet connection. Moreover, Karami et al. (2023) speculate that
complex applications, such as banking apps, may need to be
developed natively to ensure a better UI.

However, the native approach is expensive and takes a lot of
time, so developers might choose to go for a cross-platform
development approach. The easiest way to reach as many users as
possible is to create a web app, as all that is required for
distribution is a browser. Nevertheless, a web app is limited when
it comes to accessing native device functionality. Another
alternative is to develop a hybrid app, which according to Delía et
al. (2015) still keeps the development effort small, similarly to the
web approach. Furthermore, interpreted apps and cross-compiled
apps are among the options as well, which are the most
appropriate when the developer values good performance and user
experience (Delía et al., 2015), but still wants to save time and
money.

Whether or not a framework is a good choice might also look
different from the perspective of a user compared to the one from
a developer. For example, Karami et al. (2023) identified that
Flutter is better from a performance standpoint, so it might
improve user experience, while React Native is better in the case
of development support. Thus, whether an approach or framework

5

is the right choice depends on various factors, and it is up to the
developer to decide which aspects to prioritise.

4.1 Limitations and Future Work
Due to the ever-evolving nature of technology, it must be

considered that some of the papers cited in this work were
published several years ago, and their findings may not fully align
with the current state of technology anymore. For example, the
tests in the study by Delía et al. (2017) were done on devices like
the Samsung S6 and the iPhone 6 plus, both which were
considered high-end at the time, but would not anymore in 2025.
This highlights the need for new studies to validate, refine, or
challenge these earlier findings. Conducting research with the
frameworks and devices available today can provide updated
insights and ensure that our understanding keeps up with current
developments.

REFERENCES

Delía, L., Galdamez, N., Thomas, P., Corbalan, L., & Pesado, P.
(2015). Multi-platform mobile application development analysis.
2015 IEEE 9th International Conference on Research Challenges
in Information Science (RCIS), 181–186.
https://doi.org/10.1109/RCIS.2015.7128878

Delía, L., Galdamez, N., Corbalan, L., Pesado, P., & Thomas, P.
(2017). Approaches to mobile application development:
Comparative performance analysis. 2017 Computing Conference,
652–659. https://doi.org/10.1109/SAI.2017.8252165

Ebone, A., Tan, Y., & Jia, X. (2018). A Performance Evaluation
of Cross-Platform Mobile Application Development Approaches.
2018 IEEE/ACM 5th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), 92–93.
https://ieeexplore.ieee.org/document/8543442

Karami, P., Darif, I., Politowski, C., El Boussaidi, G., Kpodjedo,
S., & Benzarti, I. (2023). On the Impact of Development
Frameworks on Mobile Apps. 2023 30th Asia-Pacific Software
Engineering Conference (APSEC), 131–140.
https://doi.org/10.1109/APSEC60848.2023.00023

Koram, N., & Garg, R. (2023). Review on Mobile App
Development: Tools and Techniques. 2023 IEEE World
Conference on Applied Intelligence and Computing (AIC), 260–
266. https://doi.org/10.1109/AIC57670.2023.10263908

LePage, P., & Richard, S. (2024, September 19). What makes a
good Progressive Web App? web.dev.
https://web.dev/articles/pwa-checklist

Patidar, A., & Suman, U. (2021). Towards Analyzing Mobile App
Characteristics for Mobile Software Development. 2021 8th
International Conference on Computing for Sustainable Global
Development (INDIACom), 786–790.
https://ieeexplore.ieee.org/document/9441097

Pinto, C. M., & Coutinho, C. (2018). From Native to Cross-
platform Hybrid Development. 2018 International Conference on
Intelligent Systems (IS), 669–676.
https://doi.org/10.1109/IS.2018.8710545

Suri, B., Taneja, S., Bhanot, I., Sharma, H., & Raj, A. (2023).
Cross-Platform Empirical Analysis of Mobile Application
Development frameworks: Kotlin, React Native and Flutter.
ICIMMI '22: Proceedings of the 4th International Conference on
Information Management & Machine Intelligence, 1–6.
https://doi.org/10.1145/3590837.3590897

Zou, D., & Darus, M. Y. (2024). A Comparative Analysis of
Cross-Platform Mobile Development Frameworks. 2024 IEEE 6th
Symposium on Computers & Informatics (ISCI), 84–90.
https://doi.org/10.1109/ISCI62787.2024.10667693

https://doi.org/10.1109/RCIS.2015.7128878
https://doi.org/10.1109/SAI.2017.8252165
https://ieeexplore.ieee.org/document/8543442
https://doi.org/10.1109/APSEC60848.2023.00023
https://doi.org/10.1109/AIC57670.2023.10263908
https://web.dev/articles/pwa-checklist
https://ieeexplore.ieee.org/document/9441097
https://doi.org/10.1109/IS.2018.8710545
https://doi.org/10.1145/3590837.3590897
https://doi.org/10.1109/ISCI62787.2024.10667693

