Edge Computing for Web Applications: A State of the Art

Daniel Studera
it251507 @ustp-students.at
University of Applied Science St.Pélten
Vienna, Austria

Abstract

This paper examines the use of edge computing to enhance modern
web applications that require low latency and high interactivity.
Traditional cloud architectures struggle with increasing traffic and
long network distances, which can lead to congestion and reduce the
quality of the user experience. Content Delivery Networks (CDNs)
were an early step towards decentralisation because they cache
content on servers closer to users, thereby shortening round-trip
times. Edge computing builds on this concept by not only moving
data, but also parts of the application logic, to nearby edge servers.
This paper explains how serverless edge platforms execute event-
driven functions at the network edge to enable faster, more dynamic
page rendering and reduce latency, bandwidth requirements and
energy usage on mobile devices. It also identifies open challenges
for edge-based web applications, including limited resources on
edge nodes, managing distributed application state and ensuring
security and reliability across diverse infrastructures.

Keywords

Edge computing, Web applications, Content Delivery networks,
Serverless computing, Web performance, Low-latency systems

ACM Reference Format:

Daniel Studera. 2025. Edge Computing for Web Applications: A State of
the Art. In Unpublished Manuscript, University of Applied Sciences St. Polten.
ACM, New York, NY, USA, 5 pages.

1 Introduction

Edge computing has become a key technology for handling growing
demands in low-latency data processing and real-time responsive-
ness. Unlike centralized cloud models, edge computing brings data
processing and computation closer to end devices. This is particu-
larly important for applications in the Internet of Things (IoT) and
web environments, where responsiveness and localized control are
essential. (Gupta et al., 2025, p. 94) (Batool and Kanwal, 2025, p. 1)

In theory, the fastest way is always to skip the data transportation
over the internet and compute tasks directly on the device (Vargh-
ese et al., 2016, p. 21). However, for smaller devices like phones or
Internet-of-Things devices the computational power may be too
small and has to be sourced out to servers. But real-time appli-
cations may have preferred response times under 100 ms, where
classic cloud infrastructure cannot provide responses fast enough.
(Varghese et al., 2016, p. 21)

Web applications benefit from edge computing by reducing ac-
cess time to distant cloud servers. Placing computing tasks at the

Unpublished, St. Polten, Austria
2025.

network edge enables faster content delivery, dynamic page ren-
dering and low-latency interactions. These benefits are crucial for
modern, interactive web services. (Varghese et al., 2016, p. 21)

Bringing some of the computation physically closer to the user
is part of a greater concept called the Content Delivery Network
(CDN). It not only focuses on edge computing but has evolved
over time into using Al techniques to predict traffic and optimize
routes, 5G technologies and also serverless architectures. (Tyagi,
2025, p. 402)

This paper provides a state-of-the-art overview of edge comput-
ing for web applications, focusing on latency, CDN evolution and
serverless edge platforms.

2 Background: Web applications and Latency

Today, Web-based Information Systems (WBIS) play a crucial role
in many sectors such as healthcare, smart cities and industrial au-
tomation. However, traditional centralized cloud computing often
struggles to meet the high performance requirements of these mod-
ern applications. The main problems are bandwidth limitations
and long physical distance between a device and the cloud servers.
To solve this, data processing must move closer to the source to
improve responsiveness and efficiency. (Fazil et al., 2025, p. 1)

2.1 The Necessity of Low Latency

Using a centralized cloud introduces unavoidable delays because
data has to travel a long distance. This is a major issue because
mobile data traffic is exploding, with things like video streaming ac-
counting for a huge portion of network load (Zhao et al., 2021, p. 1).
Sending all this heavy traffic to central clouds causes congestion
and wastes bandwidth (Varghese et al., 2016, p. 21). Furthermore,
mobile devices often suffer from limited battery life. By processing
tasks at the network edge instead of sending them deep into the
cloud, we can not only reduce response time but also increase bat-
tery life (Javed et al., 2021, p. 16) (Zhao et al., 2021, p. 10). Ultimately,
high latency hurts the Quality of Experience (QoE), which is often
more important to users than simple technical metrics (Zhao et al.,
2021, p. 2).

2.2 Real-Time Interaction and Dynamic
Content

The architecture of web applications has evolved significantly. His-
torically, websites relied on Server-Side-Rendering (SSR), where
the server builds the complete page for every request (Vepsaldinen
et al., 2023, p. 2). Later, developers shifted towards Client-Side-
Rendering (CSR) and Single Page Applications (SPAs) to create
more interactive experiences that feel like desktop applications
without reloading the whole page (Vepsildinen et al., 2023, p. 2).



Unpublished, 2025, St. Polten, Austria

However, mobile devices often have limited computing power
and may not handle some complex tasks on their own (Varghese
et al., 2016, p. 21). Offloading these tasks to a distant cloud is of-
ten too slow. Edge computing helps by allowing dynamic content
generation at the network edge, supporting new hybrid techniques
like Incremental Static Regeneration (ISR) or the "Islands Architec-
ture", which allow dynamic content to be loaded efficiently without
rebuilding the whole site (Vepsildinen et al., 2023, p. 3).

2.3 Latency Thresholds and Requirements

Real-time applications have strict limits on response times. Research
shows that interactive applications, such as visual guiding systems,
work best with a response time between 25ms and 50ms (Varghese
et al., 2016, p. 20-21). Traditional cloud infrastructures are often too
slow, with round-trip times reaching around 175ms (e.g. between
Canberra and Berkeley) (Varghese et al., 2016, p. 21). In industrial
or medical scenarios, such delays can cause fatal errors (Zhao et al.,
2021, p. 2). To consistently achieve response times fast enough,
computing tasks could be moved from the centralized cloud to edge
nodes (Cao et al., 2020, p. 85716).

3 Content Delivery Network as a Precursor

Before understanding edge computing, the greater concept to grasp
is the Content Delivery Network (CDN) and the necessity to pro-
vide content more efficiently (Vepsildinen et al., 2023, p. 1,4). CDNs
represent a significant technological precursor in this evolution, es-
tablishing the fundamental concept of decentralizing data to reduce
latency and increase reliability (Vepséldinen et al., 2023, p. 1,3-4).

3.1 Basic Idea and Historical Context

For a long time, websites were hosted on a central web server
that served static content (Vepsaldinen et al., 2023, p. 1). In the
early 1990s, when the internet and websites were an emerging
technology, bandwidth-intensive content such as images and web
pages were causing bandwidth congestion and brought up the use
of basic web caching (Zhao et al., 2021, p. 4). With the explosion of
multimedia traffic in the 21st century, especially videos, centralized
server architectures became insufficient due to high latency when
transmitting data over long geographical distances (Zhao et al.,
2021, p. 4) (Gupta, 2024, p. 2).

The fundamental concept of a Content Delivery Network is to
lower the physical distance by distributing content across a global
network of servers located closer to the end user (Siidorow, 2024,
p. 9-10). Instead of routing every request to a central origin server,
CDNs deliver static assets, such as HTML documents or media
files, from multiple geographically distributed points (Siidorow,
2024, p. 9-10). This architecture significantly reduces the Round-
Trip Time (RTT) and reduces the load on the central servers as
well as other parts of the network’s infrastructure by minimizing
redundant data transmission (Gupta, 2024, p. 2) (Siidorow, 2024,
p. 9-10).

3.2 Cache Hierarchies and Infrastructure

The architecture of a CDN is based on the strategic deployment of
surrogate servers, or edge nodes at the network’s border (Vepsalai-
nen et al., 2023, p. 3-4) (Varghese et al., 2016, p. 20-21). These nodes

Studera

function as proxy caches that replicate and store copies of popular
content to maximize availability and access speed and minimize
requests to far away central servers (Gupta, 2024, p. 5).

The distributed infrastructure represents a distinct shift from
the traditional cloud computing model. While cloud computing
relies on centralized data centers to gather resources and perform
long-term, heavy data analysis, this centralization often introduces
latency due to the physical distance to the data source. (Dong et al.,
2020, p. 314, 316) (Cao et al., 2020, p. 85715) In contrast, the edge
layer decentralizes operations by acting as an executor for real-time,
small-scale data processing, while the cloud remains the global
coordinator for tasks where high speeds are not a requirement
(Dong et al., 2020, p. 318) (Cao et al., 2020, p. 85716). Therefore, edge
computing and CDNs do not replace the cloud but supplement it
and work together to form a "Cloud-Edge", where depending on
latency and processing power requirements the tasks are either
handled locally or forwarded to the central cloud (Dong et al., 2020,
p- 315-316) (Fazil et al., 2025, p. 5) (Cao et al., 2020, p. 85717).

To manage the limited storage at these edge nodes efficiently,
CDNss use sophisticated caching concepts like "Least recently used"
(LRU), "Least frequently used" (LFU) and "First in first out” (FIFO)
(Zhao et al., 2021, p. 12). In mobile network environments, these
caching strategies can extend to caching directly at base stations to
further reduce backhaul traffic and response time to improve the
user’s Quality of Experience (Zhao et al., 2021, p. 5,9).

3.3 Typical Request Flow

The typical flow of a request in an architecture that uses Content
Delivery Networks differs significantly from the traditional commu-
nication between client and server. In a typical mobile edge caching
model, content requests coming in from the user are first received
by edge nodes located in the physically close environment of the
user, rather than traveling directly to a far away central data center
(Zhao et al., 2021, p. 8-9). To manage this traffic efficiently, CDNs
use global load balancing mechanisms that assign each request
to the closest available cache server (Dong et al., 2020, p. 318). In
this process, the Domain Name System (DNS) redirects the request
toward the nearest and most responsive cache node, based on the
user’s current network location (Zhao et al., 2021, p. 9).
A typical request flow could look like this:

(1) Routing and Identification: When a user requests content,
the network identifies the optimal edge node for this request.
This selection is handled by load-balancing algorithms that
assign the request to the geographically nearest edge nodes
(Zhao et al., 2021, p. 9) (Dong et al., 2020, p. 318)

(2) Content Exploration and Cache Lookup The edge node
checks its local storage for the requested asset. If the con-
tent is not immediately available on the specific node, the
system must search the network to determine the best way
to retrieve it at the lowest cost. This is defined as the "con-
tent query problem" and may involve forwarding queries to
neighboring user equipment or base stations before traveling
the whole distance to the central network. (Zhao et al., 2021,
p. 10-11)

(3) Retrieval and Delivery



Edge Computing for Web Applications: A State of the Art

o Cache Hit: If the file is available, it is delivered immediately
to the user.

e Cache Miss: If the content is not available on the node, it
is retrieved from higher-level servers, or in the worst case,
from the central cloud. The file is then stored locally using
replacement policies such as Least Recently Used (LRU)
to manage limited storage, and finally served to the user.
(Zhao et al., 2021, p. 10-12)

This mechanism not only minimizes latency but also signif-

icantly reduces the load on backhaul links by minimizing

redundant data traffic to the core network. (Cao et al., 2020,

p. 85720)

3.4 Advanced CDN Architectures

As the demand for real-time interactivity and dynamic content
grows, the traditional model of simple caching servers has proven to
be insufficient in some cases. CDN infrastructures have evolved into
complex architectures that build the base for smart edge computing.
This is shown by emerging strategies like Distributed, Hybrid and
Multi-CDN which are designed to enhance scalability, reliability
and performance under varying network conditions.

e Distributed Architectures: In modern CDNS, the goal is a
highly distributed architecture where numerous edge servers
are deployed across multiple Points of Presence (PoPs). This
approach focuses on minimizing the physical path between
the user and the content and significantly reducing latency
and ensuring that high traffic volumes are handled locally
rather than overwhelming central data centers. (Tyagi, 2025,
406-407,414)

e Hybrid Architectures: Hybrid architectures combine tra-
ditional on-premise edge servers with cloud-based CDN
services. This approach helps organizations adjust their re-
sources based on real-time demand. During peak traffic, ad-
ditional workloads can be offloaded to the cloud, while nor-
mal operations continue on local infrastructure. This idea is
based on the Cloud-Edge where both edge nodes and cloud
systems work together. (Tyagi, 2025, 406-407)

e Multi-CDN Strategies: To ensure high availability and re-
duce the risk of vendor-specific outages, big enterprises in-
creasingly use Multi-CDN strategies. In this model, the traffic
is distributed across CDN services from multiple vendors
based on real-time performance metrics, geographical loca-
tion and cost. If a certain CDN encounters problems like
congestion or latency in particular regions or globally, an AlI-
driven traffic management system can automatically reroute
the users to better-performing providers. This hopes to en-
sure that big platforms like Amazon or Netflix won’t en-
counter big outages and interrupted service. (Tyagi, 2025,
406-407,414)

These advanced architectures show the significance of transition-
ing from CDNss as passive content repositories to active intelligent
delivery platforms.

Unpublished, 2025, St. Polten, Austria

4 Edge Computing for Web Applications

While Content Delivery Networks have successfully decentralized
the storage of static assets, the modern web requires the decen-
tralization of application logic. Edge computing addresses this by
shifting computational tasks from centralized cloud data centers to
the edge of the network, closer to the end-user.

4.1 Definition and Operational Principle

Edge computing is defined as a distributed computing structure
that brings computation and data storage closer to the location
where it is needed, and therefore improves response times and
saves bandwidth (Fazil et al., 2025, p. 1). Contrary to traditional
cloud computing, where data is transmitted to distant data centers
for processing, edge computing uses resources at the edge of the
network, eg. base stations, routers or micro data centers to execute
application logic (Cao et al., 2020, p. 85715) (Varghese et al., 2016,
p- 20).

In the specific context of web applications, it is often defined as
Serverless Edge Computing. Here, developers deploy event-driven
functions (Function-as-a-Service or FaaS) that run on edge nodes
(Batool and Kanwal, 2025, p. 1). Platforms like AWS Lambda@Edge
or Cloudflare Workers enable the execution of these functions in
response to events (e.g. HTTPS requests) directly at edge nodes
(Javed et al., 2021, p. 7-8) (Siidorow, 2024, p. 16,19-20). The server-
less model on the edge is especially helpful for web applications,
because it reduces the need for always-on servers, instead starting
up containers only when requests occur, which optimizes resource
usage and costs (Javed et al., 2021, p. 2).

4.2 Key Benefits: Latency, Bandwidth and
Real-Time Processing

As already stated, the primary advantage of using edge comput-
ing in web development is the necessity to overcome the physical
limitations of centralized cloud architecture.

e Latency Reduction By processing requests at the edge, the
round-trip time (RTT) to the origin server is significantly
reduced (Fazil et al., 2025, p. 1) (Varghese et al., 2016, p. 21).
Research shows that in real-time applications such as gaming
or augmented reality using a distant cloud poses serious
latency problems due to geographical location (Varghese
et al, 2016, p. 21).

¢ Bandwidth Efficiency Edge computing takes a lot of load
off the central server infrastructure by processing data lo-
cally. Instead of transmitting lots of raw data to the cloud,
edge nodes can filter, aggregate, or compress data and for-
ward only relevant data to the central infrastructure (Vargh-
ese etal., 2016, p. 21). This is especially critical for bandwidth-
heavy content like video streaming or Augmented and Vir-
tual Reality applications where a lot of congestion can be
prevented by processing on the edge of the network (Gupta,
2024, p. 3).

e Real-Time Capabilities Because edge computing is close
to the data source, it can process information with much
lower delay. This reduced transmission time enables real-
time responses for the user and supports fast, context-aware
decisions in web applications. (Fazil et al., 2025, p. 1-2)



Unpublished, 2025, St. Polten, Austria

4.3 Beyond the CDN: From Caching to
Computing

Traditionally, Content Delivery Networks focused on caching static
assets to reduce latency and origin server load (Vepsélainen et al.,
2023, p. 1) (Tyagi, 2025, p. 401-402). Edge computing evolves this
model by transforming edge nodes from passive caches into active
execution environments used to process dynamic content (Vep-
sildinen et al., 2023, p. 4) (Tyagi, 2025, p. 411). This shift enables
programmable capabilities where data analysis, security filtering
and content generation happen at the edge of the network (Tyagi,
2025, p. 411) (Cao et al., 2020, p. 85715). Therefore, web applications
can implement dynamic rendering strategies like server-side ren-
dering (SSR) or incremental static generation (ISR), directly at the
edge to optimize the Quality of Experience (QoE) for the end-user
(Vepsildinen et al., 2023, p. 1,3,5).

4.4 Edge Functions and Runtimes

Edge logic is primarily implemented via Serverless Edge Computing
or Function-as-a-Service (FaaS), which allows developers to deploy
stateless functions without infrastructure management (Batool and
Kanwal, 2025, p. 1-2). The runtimes used generally fall into two
categories:

e MicroVM-based: Architectures like AWS Lambda@Edge
utilize lightweight virtualization (e.g. Firecracker) to provide
isolation and broad language support, though they can strug-
gle with "cold start" latencies when initialized (Siidorow,
2024, p. 16-17).

o Isolate-based: Platforms like Cloudflare Workers or Deno
Deploy use V8 isolates to run multiple functions within a
single process. In this approach "cold starts" are eliminated
and it reduces memory usage, but it is typically restricted to
JavaScript and WebAssembly environments (Siidorow, 2024,
p. 22-23,27-28).

These runtimes enable developers to execute custom code di-
rectly at the network periphery, allowing them to shape client
requests and server responses, providing faster response times and
new possibilities (Vepsildinen et al., 2023, p. 1).

(1) Dynamic Request Manipulation: Functions can dynami-
cally assemble web pages or tailor content in real-time based
on the user’s location or device type, rather than serving
generic static resources (Gupta, 2024, p. 8).

(2) Media Optimization Edge functions can perform on-the-
fly transformations of media assets, such as resizing, crop-
ping or formatting images and videos to match the capabili-
ties of the requesting device (Gupta, 2024, p. 8).

(3) Security and Access Control: Complex access control
logic can be implemented directly at the edge to allow the
system to validate requests without long round trips to the
origin server (Gupta, 2024, p. 8).

(4) Real-Time AI Inference: Edge nodes are capable of run-
ning lightweight AI models to perform tasks such as real-
time content analysis, automated content moderation, or
media analytics closer to the end-user. (Gupta, 2024, p. 5).

Studera

4.5 Challenges and Limitations

Deploying web applications at the edge of the network can intro-
duce challenges compared to using a centralized cloud.

(1) Resource Constraints: Edge nodes often possess limited
computational power and memory compared to cloud data
centers. Therefore, highly efficient algorithms and effective
resource scheduling are needed (Batool and Kanwal, 2025,
p- 14).

State Management: Connecting to centralized databases

from the edge can reintroduce latency due to the round-trip

time required for queries. While data replication to the edge
may be a solution, it introduces risks regarding data consis-

tency and “replication lag”, making it difficult to maintain a

synchronized state across all nodes for real-time applications.

(Siidorow, 2024, p. 29).

Security: Since Edge Functions are usually limited to a

small scope and need fewer privileges, they often have a

significantly reduced attack surface compared to full appli-

cations in containerized or virtual environments (Siidorow,

2024, p. 28).

(4) Cold Starts: Cold starts may occur when a certain edge
function is not used for a longer time. Depending on the
runtime, cold starts can present a significant problem by
causing delays during complex workloads such as Al func-
tions, which negate the latency benefit of edge functions if
they take longer than the original round trip time to the data
center (Siidorow, 2024, p. 27)

—
N
~

—
[SY)
=

5 Conclusion

This work demonstrates how edge computing builds upon the con-
cepts of traditional content delivery networks (CDNs) to overcome
the latency and bandwidth limitations of centralized cloud architec-
tures. Modern web-based systems depend on real-time interaction,
rich media, and personalization. In such scenarios, long network
paths to distant data centers can quickly slow down applications.
CDNs reduce this issue by caching static content at the edge; mean-
while, edge computing builds on this model by running parts of the
application logic on servers close to the user.

For web applications, this shift enables faster handling of re-
quests, more responsive dynamic content and an improved quality
of experience, particularly on mobile devices or in scenarios that
require a lot of bandwidth. However, serverless edge platforms
also introduce new challenges. Edge nodes have limited computing
and memory resources, and coordinating distributed state is more
challenging. Cold starts and heterogeneous runtimes can further
reduce performance if not managed effectively.

Overall, current research indicates that the cloud and the edge
should be used together. Content Delivery Networks (CDNs) and
serverless edge platforms handle latency-sensitive tasks near the

user, while centralized cloud systems remain important for computation-

intensive workloads and long-term data storage. In the future, CDN
and edge strategies will become increasingly prominent, as real-
time services, IoT deployments, and rich media applications con-
tinue to grow and push performance requirements beyond what
centralized cloud architectures can reliably provide.



Edge Computing for Web Applications: A State of the Art

Acknowledgments

Parts of the wording of this manuscript were supported by genera-
tive Al tools for language editing. All scientific content, structure
and conclusions were created and verified by the author.

References

Iqra Batool and Sania Kanwal. 2025. Serverless Edge Computing: A Taxon-
omy, Systematic Literature Review, Current Trends and Research Challenges.
arXiv:2502.15775 [cs.NI] https://arxiv.org/abs/2502.15775

Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. 2020. An Overview on Edge
Computing Research. IEEE Access 8 (2020), 85714-85728. doi:10.1109/ACCESS.2020.
2991734

Yungi Dong, Jiujun Bai, and Xuebo Chen. 2020. A Review of Edge Comput-
ing Nodes Based on the Internet of Things. In Proceedings of the 5th Interna-
tional Conference on Internet of Things, Big Data and Security (IocTBDS). 313-320.
doi:10.5220/0009407003130320

A. W. Fazil, A. Ghairat, and A. J. Kohistani. 2025. Advancing Web-Based Information
Systems Performance via Edge Computing: A Comprehensive Systematic Review.
GAME 2, 4 (2025), 1-20. doi:10.29103/game.v2i4.24189

Ragini Gupta, Claudiu Danilov, Josh Eckhardt, Keyshla Bernard, and Klara Nahrstedt.
2025. Characterizing Container Performance in Edge Computing. In Proceedings of

Unpublished, 2025, St. Polten, Austria

the ACM SIGCOMM 2025 Posters and Demos (Coimbra, Portugal) (ACM SIGCOMM
Posters and Demos °25). Association for Computing Machinery, New York, NY, USA,
94-96. doi:10.1145/3744969.3748438

Sachin Gupta. 2024. Enhancing Content Delivery with Edge Computing in Media and
Entertainment. Zenodo. doi:10.5281/zenodo.13933556

Hamza Javed, Adel N. Toosi, and Mohammad S. Aslanpour. 2021. Serverless Platforms
on the Edge: A Performance Analysis. arXiv:2111.06563 [cs.DC] https://arxiv.org/
abs/2111.06563

Mikael Siidorow. 2024. Survey of Serverless Edge Computing for Web Applications.
doi:10.13140/RG.2.2.13600.39680

Anuj Tyagi. 2025. Optimizing digital experiences with content delivery networks:
Architectures, performance strategies, and future trends. World Journal of Advanced
Research and Reviews 7, 2 (01 2025), 401-417. doi:10.30574/wjarr.2020.7.2.0230

Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dimitrios
Nikolopoulos. 2016. Challenges and Opportunities in Edge Computing. In
2016 IEEE International Conference on Smart Cloud (SmartCloud). IEEE, 20-26.
doi:10.1109/SmartCloud.2016.18

Juho Vepsildinen, Arto Hellas, and Petri Vuorimaa. 2023. Implications of Edge Com-
puting for Static Site Generation. arXiv:2309.05669 [cs.HC] https://arxiv.org/abs/
2309.05669

Yuhan Zhao, Wei Zhang, Longquan Zhou, and Wenpeng Cao. 2021. A Survey on
Caching in Mobile Edge Computing. Wireless Communications and Mobile Comput-
ing 2021 (2021), 1-21. doi:10.1155/2021/5565648


https://arxiv.org/abs/2502.15775
https://arxiv.org/abs/2502.15775
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.5220/0009407003130320
https://doi.org/10.29103/game.v2i4.24189
https://doi.org/10.1145/3744969.3748438
https://doi.org/10.5281/zenodo.13933556
https://arxiv.org/abs/2111.06563
https://arxiv.org/abs/2111.06563
https://arxiv.org/abs/2111.06563
https://doi.org/10.13140/RG.2.2.13600.39680
https://doi.org/10.30574/wjarr.2020.7.2.0230
https://doi.org/10.1109/SmartCloud.2016.18
https://arxiv.org/abs/2309.05669
https://arxiv.org/abs/2309.05669
https://arxiv.org/abs/2309.05669
https://doi.org/10.1155/2021/5565648

	Abstract
	1 Introduction
	2 Background: Web applications and Latency
	2.1 The Necessity of Low Latency
	2.2 Real-Time Interaction and Dynamic Content
	2.3 Latency Thresholds and Requirements

	3 Content Delivery Network as a Precursor
	3.1 Basic Idea and Historical Context
	3.2 Cache Hierarchies and Infrastructure
	3.3 Typical Request Flow
	3.4 Advanced CDN Architectures

	4 Edge Computing for Web Applications
	4.1 Definition and Operational Principle
	4.2 Key Benefits: Latency, Bandwidth and Real-Time Processing
	4.3 Beyond the CDN: From Caching to Computing
	4.4 Edge Functions and Runtimes
	4.5 Challenges and Limitations

	5 Conclusion
	Acknowledgments
	References

