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Abstract

This paper discusses recent developments in Simultaneous Local-
ization and Mapping (SLAM) combined with the use of Artificial
Intelligence (AI). SLAM makes it possible for robots to build maps
of unknown environments while tracking their position, but with
traditional methods robots often struggle in dynamic or unstruc-
tured settings due to unclear or moving objects. Recent advances in
Al and its integration into SLAM address these issues by improving
feature extraction, predictive modeling, and adaptability. Convo-
lutional and Graph Convolutional Networks enhance robustness
and scalability, while transformer architectures enable efficient tra-
jectory planning. Obstacle detection and avoidance in real-world
scenarios are further reinforced by deep reinforcement learning.
Al-driven innovations also introduce multi-modal sensor fusion,
semantic mapping, enhanced loop closure detection, and collab-
orative multi-agent frameworks. Comparative studies reveal that
Al-enhanced SLAM shows a higher accuracy and robustness across
varied scenarios.

Keywords

Artificial Intelligence, Al, Simultaneous Localization And Mapping,
SLAM, ORB-SLAM, VSLAM, SIFT

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a critical tech-
nology in robotics and self navigation systems. SLAM makes it
possible for the robot to create a map of an unknown environment
that a robot or a vehicle is moving through while determining its
position on this map. (Wang & Zhang, 2025) To create these maps,
the robot has to know its location and the location of other objects
at all times. SLAM achieves this by gathering data from various sen-
sors, including cameras and LiDAR (Light Detection and Ranging).
(Alinas et al., 2008)

1.1 Limitations of Traditional SLAM

SLAM can be implemented in various forms, from probabilistic al-
gorithms like Kalman filters and Extended Kalman Filters (EKFs) to
graph-based optimization techniques and particle filters (e.g., Fast-
SLAM) and Visual-SLAM (VSLAM), that mainly utilizes cameras.
However, traditional SLAM methods come with inherent drawbacks
that limit their efficiency in complex use cases. (Ramachandran,
2025)

Table 1: Strengths and weaknesses of traditional SLAM ap-
proaches

Aspect Strengths Weaknesses

Accuracy High accuracy in struc- | Poor performance in
tured environments dynamic or unstructured
scenes

Computational Effi- | Efficient with limited land- | Scales poorly with large

ciency marks feature sets
Real-time  Perfor- | Reliable in stable scenarios | Slows down in complex or
mance cluttered environments

Source: (Wang & Zhang, 2025)

Table 1 shows the strengths and weaknesses of traditional SLAM
methods. Accuracy is essential for determining the robots posi-
tion on the map and is usually high in structured environments
like warehouses or office-buildings. However, without absolute
positional references, reliance on relative positioning methods in-
creases cumulative errors over time, compromising localization
accuracy over longer durations. (Li et al., 2024) Furthermore, tradi-
tional systems struggle with the noisy, inconsistent, or incomplete
data produced by sensors, such as LIDAR, cameras, and Inertial
Measurement Units (IMUs), which complicates reliable data acqui-
sition. (Alinas et al., 2008) Secondly, algorithms like EKF-SLAM
work well in less complex environments. However, they can be-
come computationally intensive and slow when coming across large
numbers of landmarks or non-linear landmarks, reducing their real-
time performance. (Wang & Zhang, 2025) Additionally, traditional
methods often assume static surroundings, causing them to fail
in real-world scenarios that feature dynamic obstacles, moving
humans, or changing structural layouts. (Taketomi et al., 2017)

1.2 The Role of Al in SLAM

These limitations of traditional SLAM can potentially be removed
by the recent developments in Artificial Intelligence (AI). With
the integration of Al errors in traditional SLAM can be mitigated
through its capabilities for data-driven feature extraction and predic-
tive modeling. (Ramachandran, 2025) These Al-driven approaches
include the following, which will be described in detail in the next
chapter:

o Transformer Architectures
o Deep Reinforcement Learning
e Deep Learning



Transformer architectures provide predictive spatial reasoning and
inertial data processing capabilities, capturing dependencies in time
and contextual variations from sensor data. (Ramachandran, 2025)
Deep Reinforcement Learning helps advanced systems detect dy-
namic objects, classify them, and predict trajectories. This increases
accuracy and collision avoidance capabilities. (Wang & Zhang, 2025)
Deep neural networks (e.g., CNNs/GCNs) automate the extraction
and interpretation of meaningful features from sensor data, im-
proving movement in challenging environments. (Fan et al., 2024)
(Ramachandran, 2025)

This paper aims to analyze how the incorporation of advanced Al
improves localization accuracy, environmental understanding, and
operational robustness in complex environments. AI’s integration
could facilitate advancements in SLAM technologies, increasing
their practical usage and reliability.

2 AI Methodologies Enhancing SLAM

Al methods offer solutions to the limitations mentioned above
by enhancing data-driven feature extraction, predictive modeling,
and efficient computational handling. By integrating modern Al
algorithms, researchers were able to improve performance and
scalability. (Ramachandran, 2025) In the following chapters, we will
explore these improvements in detail.

2.1 Deep Learning for Feature Extraction

Recent developments in Al integration improve the system’s abil-
ity to perceive and interpret sensory data (Ramachandran, 2025).
Deep neural networks, specifically Convolutional Neural Networks
(CNNs) and Graph Convolutional Networks (GCNs), have signif-
icantly improved feature extraction and recognition within the
SLAM pipeline. (Wang & Zhang, 2025)

2.2 CNNs for Robust Feature Learning

Older approaches relied on handcrafted feature descriptors such as
SIFT (Scale-Invariant Feature Transform) and ORB (Oriented FAST
and Rotated BRIEF). These traditional methods were widely used
in VSLAM to extract features from images and track distinctive
visual landmarks across frames. (Taketomi et al., 2017) On the other
hand, CNN-based descriptors automatically learn to extract features
that are more discriminative and stable from sensor data. This
automation and better interpretation of features improve robustness
in unclear environments or challenging conditions. (Ramachandran,
2025) (Li et al., 2024)

2.2.1 GCN:s for Graph Optimization and Transformer Architectures.
Beyond standard image processing, Graph Convolutional Networks
take advantage of the natural graph-structured representation for
SLAM problems (Wang & Zhang, 2025). GCNs propagate relational
information across the graph, and this propagation significantly
improves computational efficiency, enhances scalability, and boosts
important tasks such as data association and loop closure detection
compared to traditional graph optimization methods (Ramachan-
dran, 2025). Furthermore, recent breakthroughs in transformer ar-
chitectures have adapted these transformers from their initial pop-
ularity in natural language processing to robotics navigation tasks
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due to their capabilities for spatial reasoning and predictive model-
ing. (Ramachandran, 2025)

2.2.2  Multi-Step Prediction Transformers. Multi-Step Prediction
Transformers are transformer models that employ a training strat-
egy based on predicting several steps in advance. The resulting
transformers offer significant computational savings and high accu-
racy, enabling robots to plan complex trajectories in a very efficient
manner. This directly translates to improved real-time performance.
(Ramachandran, 2025) (Gaia et al., 2023)

2.3 Deep Reinforcement Learning for Dynamic
Adaptability

Deep Reinforcement Learning (DRL) represents a significant ad-
vancement for navigating dynamic, real-world environments. It
directly reduces one of the primary weaknesses of classical SLAM,
such as obstacle avoidance and trajectory optimization in complex
environments. By integrating DRL algorithms with dense sensory
data (like LiDAR, vision, and radar), Al models can generate pre-
dictions of obstacle trajectories, allowing the robot to adaptively
anticipate and respond to dynamic obstacles. (Ramachandran, 2025)
(Li et al., 2024) (Fan et al., 2024)

3 Al-Driven Innovations in SLAM Frameworks

The impact of Al has completely changed the paradigm of SLAM,
shifting its focus away from geometric reconstruction. Instead of
relying solely on handcrafted feature extraction and probabilistic
estimation, modern SLAM systems increasingly incorporate data-
driven learning, semantic understanding, and predictive modeling.
(Ramachandran, 2025)

3.1 Multimodal Perception and Sensor Fusion

Al-driven multimodal methods integrate several sensor data streams,
such as LiDAR, cameras, radar, and IMUs, for holistic environmen-
tal perception. Advanced sensor fusion algorithms, which are often
driven by deep neural networks and transformer architectures with
attention mechanisms, perform this integration. (Ramachandran,
2025) (Wang & Zhang, 2025)

This approach can help reduce the errors of each sensor, such
as visual sensors in low-light conditions or textureless environ-
ments, and LiDAR in situations with interference from fog, rain,
or dust. By fusing these modalities, multimodal SLAM is able to
have better environmental awareness and mapping accuracy. (Li
et al.,, 2024) For example, radar sensors provide a more robust scan
of the environment under visibility conditions, such as in smoke,
fog, or dust. More recent work in context-aware sensor fusion
even enables SLAM systems to dynamically change their fusion
parameters according to real-time sensor reliability and environ-
mental context, always selecting the most reliable sensor at any
time. (Ramachandran, 2025)

3.2 Semantic Mapping and Contextual
Understanding
Shifting from traditional geometric maps, which are typically oc-

cupancy grids or point clouds, to semantically enriched maps is
another big step in improving the accuracy of detecting specific
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objects. Traditional SLAM methods focused on spatial and metric
accuracy, providing limited contextual understanding. Al, mainly
in the form of deep neural networks, notably the aforementioned
CNNss and transformer-based architectures, enables the creation
and updating of such context-rich maps in real time. Improved
object recognition and semantic segmentation — that is, labeling
elements such as vehicles, pedestrians, doors, and furniture - are
integrated directly into the map structure in this process. With the
inclusion of higher-level contextual information, Semantic SLAM
is able to enhance the robot’s situational awareness and decision-
making.

3.3 Improving Loop Closure Detection

Loop Closure Detection (LCD) is one of the most important compo-
nents of SLAM, guaranteeing long-term consistency in the robots
position by recognizing previously visited locations and correcting
the accumulated drift errors afterwards. (Wang & Zhang, 2025) Tra-
ditional LCD methods often struggle to perform well in repetitive
or structurally unclear environments due to perceptual confusion.
(Ramachandran, 2025) This results in incorrectly recognizing previ-
ously visited locations and a potential for mapping distortion. New
Al methods solve this by using deep learning features and recently
adapted foundational AI models such as ChatGPT and Blip-2 in
order to extract rich semantic information from certain objects in
the environment, called "semantic anchors". (Wang & Zhang, 2025)

(b)

Figure 1: Detecting semantic anchors
Source (Li et al., 2024)

As shown in pictures 1a and 1b, semantic anchors include objects
like door numbers, directional signs, or shelf numbers that are
semantically distinctive yet stable, and that reliably distinguish
between similar yet distinct areas. This helps the robot identify
correct loop closures, even in highly repetitive settings, like hotel
corridors or warehouses, resulting in higher localization accuracy.
(Li et al., 2024) The paper “Resolving Loop Closure Confusion in
Repetitive Environments for Visual SLAM through AI Foundation
Models Assistance” (Li et al., 2024) shows a notable improvement
in a simulated environment with two different datasets, increasing
from previous accuracy rates of 16.7% and 19.4% to a 100% accuracy
score in both datasets. (Li et al., 2024) The simulated environment
and accuracy table are shown in figure 2 and table 2.

Figure 2: Simulated environment
Source: (Li et al., 2024)

Table 2: Accuracy scores

Datasets Metrics Ours ORB-SLAM3
Precision | 100% 16.7%

SE1 Recall 100% 100%
SE2 Precision | 100% 19.4%
Recall 100% 100%

Source: (Li et al., 2024)

3.4 Collaborative SLAM

Multirobot SLAM describes the challenges of scalability and the
need for extensive, comprehensive coverage in large-scale appli-
cations where autonomous agents coordinate in exploration and
mapping. This is made possible by Al-driven collaborative frame-
works that combine information from multiple agents into a single
global map. (Ramachandran, 2025) The collaborative frameworks
also involve decentralized consensus algorithms and sophisticated
data association techniques for effective multi-agent sensor data
integration. This is further enhanced by decentralized approaches
brought forth by GNNs and transformer-based multi-agent systems.
This improves scalability, enhances spatial coverage, and overall ro-
bustness for complex and large-scale deployments, such as disaster
response or urban mapping. (Ramachandran, 2025) (Li et al., 2024)
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Table 3: SLAM performance across application domains

SLAM Method Urban Navigation | Disaster Scenar- | Underwater Indoor Robotics Planetary Explo-

ios Exploration ration
EKF/Particle Filter | Moderate (50-100 | Low (1-2 m) Low (2-5m) Moderate (30-50 | Low (2-5m)
SLAM cm) cm)

Graph-Based SLAM High (10-50 cm)

1m)

Moderate (50 cm-

Moderate (1-2m) | High (10-30 cm) Moderate (50 cm-

1m)

Transformer-Based Se- | VeryHigh(<5cm) | High (<20 cm) High (<50 cm) Very High (<10 | High (<1 m)
mantic SLAM cm)

Reinforcement Learn- | High (10-30 cm) High (20-50 cm) Moderate (50-100 | High (<20 cm) Moderate (1-2 m)
ing SLAM cm)

Multimodal (Li- | Very High (<10 | Very High (<30 | High (<50 cm) Very High (<10 | High (<1 m)
DAR/Vision/Radar) cm) cm) cm)

SLAM

Source: (Ramachandran, 2025)

4 Impact and Challenges

Even though AI has demonstrably optimized the performance of
SLAM systems, the deployment of these Al-driven systems intro-
duces new technical, logistical, and ethical challenges.

4.1 Comparative Performance

Al-driven SLAM methods consistently outperform traditional ap-
proaches across key metrics, such as accuracy and robustness in
complex environments.

In comparison, EKF/Particle Filter SLAM may achieve an accuracy
of 50-100 cm mean error in urban navigation, but transformer-
based semantic SLAM may reach an accuracy of less than 5 cm in
the same context. Similarly, in indoor environments, transformer-
based semantic SLAM achieves very high localization accuracy
of less than 10 cm, compared to the accuracy of EKF/Particle Fil-
ter SLAM, which is 30-50 cm. (Ramachandran, 2025) Additionally,
Al integration has higher robustness, particularly in managing
dynamic elements. Traditional methods inherently assume static
environments, leading to localization errors in real-world scenarios
featuring moving vehicles, humans, or changing objects. In contrast,
Al-driven SLAM, especially those using DRL, demonstrates a big
improvement in robustness and prediction of objects when it comes
to dynamic obstacles. In dynamic industrial environments, robots
utilizing transformer-based dynamic SLAM achieved localization
accuracy consistently within centimeters, despite the movement
of humans and machinery. (Ramachandran, 2025) A performance
overview can be seen in table 3.

4.2 Computational Overheads and Efficiency

One of the most critical challenges brought about by advanced
Al methodologies is the significant computational overhead that
they introduce. While modern architectures continue to be much
more efficient with each generation, the computational, energy, and
memory requirements for Al are still enormous. Training large-
scale Al models requires highly resource-intensive processes that
take long periods of time and also consume a lot of energy. Even in
their deployment, real-time inference normally requires intensive
on-board hardware in the form of dedicated accelerators, expensive
GPUgs, or dedicated Al chips, which may be too much for resource-
constrained platforms. (Fan et al., 2024) (Ramachandran, 2025)

4.3 Ethical Problems

Processing large amounts of image and sensor data, for example,
high-resolution visual and LiDAR streams in public environments,
raises serious data privacy and security concerns. It is impossi-
ble to avoid risks related to data handling and storage since AI-
driven SLAM systems rely on the sense-making process. More
importantly, ethical considerations and cybersecurity requirements
have become critical, especially for autonomous systems operating
in human-centric and sensitive environments, as seen with au-
tonomous driving cars and food-delivery robots. Additionally, if the
training dataset is not diverse, there is also a risk of having biased
algorithms, which could result in inaccurate or unfair navigation
and decision-making outcomes. (Ramachandran, 2025)

5 Conclusion

With the integration of Al in SLAM frameworks, there has been
significant improvement in the accuracy, adaptability, and context
of autonomous navigation. The deep learning, reinforcement learn-
ing, transformer architectures, and multimodal sensor fusion in
the modern SLAM systems have overcome some of the serious
limitations of traditional approaches. This leads to more robust
performance in dynamic and unstructured environments with se-
mantically enriched mapping.

However, such advances also have their drawbacks. The computa-
tional power involved in training and executing these large-scale Al
models require massive amounts of energy, high memory, and spe-
cialized hardware, and other environmental resources. Additionally,
serious ethical issues may come up regarding data privacy, security,
and possible algorithmic bias when processing large amounts of
sensor and visual data in human-centric environments.
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